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By Franklin W. Diederich
SUMMARY

A method is outlined for calculating the expected number of maxima
or minims of & random process with non-Geussian frequency distribution
from the statistical moments of the process and its first two derivatives.
This method is based on an eetimate of the joint frequency function of
the process and its first two derivatives gilven by means of & generalized
form of Edgeworth's series; the procedure thus consilsts essentlally in
applying a correction to the results for a Gaussian process. The func-
tions required in this procedure are calculated for the first two correc-
tion terms; therefore, the effects of skewness and kurtosis can be cal-
culated, provided the required moments are known. Expressions are given
for these moments in terms of multiple correlstion functions and multi-
spectra, and the relations between these functions for a random output
of a linear system and those for the random input are indicated.

INTRODUCTION

Meny physicel processes of interest in aeronautics and allied fields
are determinate only in a statistical sense. Such processes are referred
to as stochastic or random processes. If the statistical characteristics
of such a process are invariant in time, it is referred to as a stationary
random process. The basic problem in connection with these processes is
ususlly either to predict the output of e dynamlc system which is subjected
to & random input (so that the output is also generally random in nature)
from the statistical characteristics of the input and the dynamic charac-
teristics of the system, or to estimate certain statistical characteris-
tics of & glven process from others. (See refs. 1 to 6 for discussions
of several problems in communications theory and aeronautics from the
point of view of random-process theory.)

One statistical characteristic which is frequently of iInterest is
the number of maxims or minima expected in a given time; that 1s, the
number of positive or negative peaks of the process within a certain
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range or exceeding a certain level that can be expected in that time. . - -
The expected life of-an airplane, for instance, depends on the expected
number of times in a given period of time that its ultimate load is
likely to be exceeded. (See refs. 4 and 5.) Similarly, the fatigue -
life of a structure can iIn some cases be related to the number of maxima

per unit time and their frequency distribution. (See ref. 6, for - _
instance.)

For a stationsry Gaussian process -~ that is, for a stationary random
process in which the stochastic varlable and 1ts derivative are Jointly
normally distributed - Rice (ref. 1) has given a simple expression for the
expected number of maxims in terms of the second méments of thé process
and its first two derivatives. These moments can be obtalned from the
correlation function or power spectrum of the process. In turn, if the
process represents the output of & linear system, the spectrum can be —
related very simply to the correlation function or.spectrum of the input.

In the present paper & simlilar expression for the expected number
of maxima is obtalned for a stationary process with a joint frequency
distribution of the process and its first two derivatives; this distri- —
bution differs slightly from the normal. The apprdach used herein con-
sists 1n expressing the joint frequency distribution of the process and . -
its derivatives 1in terms of 1ts second and higher foments by means of a
multiveriate form of Edgeworth's series, so that the desired expected
number of maxima or minims can then be expressed in terms of these moments. -
Again, these moments can be expressed in terms of correlation functions
and spectra, and the correlation functions and spectra of an output can .
be related readily to those of the input. However, in this case more than -t
the ordinary (double) correlation function or power spectrum is required,
because the nth moments depend on the n-tuple correlation function or
the corresponding spectrum. Hence, some of the multiple correlstion
functions or multispectra of the input must be known if the number of
maxima of an output process with non-Gaussilan frequency distribution is
to be predicted by this method.

Inasmuch as the terms of Edgeworth's seriles represent, essentially,
corrections to & normal distribution, the approech outlined herein also
furnishes, essentlally, a correction to the results obtained for a
Gaussian process. Explicit expressions are given herein for the func-
tions required in the first two correction terms, which involve +the third
and fourth maoments. No such expressions are glven for higher correction
terms, because the effort entalled in obtaining the required multispectra
soon becomes very large. The procedure glven herein furnishes an esti=
mate of the effects of skewness and kurtosis on the results of interest
and 1s, therefore, best suited to distributions which differ by relatively
little from the normal one, that is, primarily in the third and fourth
moments but to a lesser extent in the higher moments.
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Consideration will be confined to a process with zeroc mean, This
trivial restriction implies that, for a process with nonzero mean, the
results given here apply directly to the process which is the difference
between the actusl process and its mean; they can, however, be modified
to apply to the actual process in e straightforward fashion.

Dn

f(xo,xl,xz)

fG (xo,xl,xa)

F(t)
h(t)

H(w)

Tunp (%0)
Jmmp (¥0)
M1j
2(*9)

N(x)

x(t)

x(t),%(t)

SYMBOLS

P
operstor —gx

ot

trivariate frequency-distribution function for a random
process and its first two derivatives

trivariate normal distribution (with zero means)

random input process
indicisl-response function for linear dynamic system
frequency-response functlon for linear dynamic system

function used in expression for n(xo) ;, defined in
equation (17)

function used in expression for N(xo) ;, defined in
equation (21)

reciprocal second moments (elements of inverse of
matrix of second moments)

expected number per unit time of maxima with inten-
slties In band of unit width centered on xg

expected number per unit time of maxima above xg

time

given random process, which may be output of a linear
system subject to random input

first and second time derivatives of x('b)
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random veriebles corresponding to x, X, and %,
respectively

/2

parsmeter, JZ/EES

Joint statistical moments of random process and its
first two derivatives, defined in equation (6a)
or (6b)

Joint statistilcal moments of random process and its
first two derivatives, defined in equation (5)

determinant of matrix of second moments

dimensionless random varilsble, -&—XSL

Jx2
(double) correlation function for x(t)
triple correlation function for x(t)
quadruple correlation function for x(+t)
power spectrum for x(t), Fourler transform of ¥y

double power spectrum for x(t), Fourler transform
of Wy

triple power spectrum for x(t),_Eourier transform
of Vaenrt

time displacement, argument of

circular frequency
ANALYSIS

Basic Relatlons -

For & given statlonary random process x(t), the number of maxims
that are expected to_exceed the level Xg Pper unit time will be
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designated by N(xo) , and the number of maxims in an intensity band of
unit width centered on X0 that are likely to occur per unit time will
be designated by n(xo) , Bo that

n(xo) = - 6_153%{&- (1)

In reference 1 the following expression is gilven for n(xo) in
terms of the joint frequency distribution f(xo- ,xl,xz) of the process
and its first two derivatives:

0
n(xo) = [-m |x21f(x0,0,x2)d.x2 ' (2)

where f(XO’xl’XE) is defined by the fact thaet f(xo,xl,x2)dxodxldx2
represents the probability that at time +:

o S x(t) <xg + dxg

A

X1

A

xp S R(t) < xp + axp

This function is invariant with t by virtue of the assumed stationarity
of the process.

For a Gaussilan process this result can be expressed In an especisally
simple form. For such a process the fregquency function is

i 2 2 >
fa(Ror*ys¥) = ——=— e 2 (Moo iy %, “#pp%, "+ Moo gx) (3)
(2x)>/2\n

where A 1s the determinant of the second moments of the process, and
the coefficients Mi 3 are the elements of a matrix reciprocal to the

metrix of the second moments and will be discussed further 1n & later
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section. Substitution of this expression for f(xo,xl,x2) in equa-
tion (2) ylelds an expression for n(xo) in terms of the moments; hence,
integration over Xg Ylelds en expression for N(xo), and thus also for

total number of maxims per unit time, which is equal to N(-»). The
expressions for n(xo) and N(-m) are given in reference 1.

For a non-Geussilan process a similer expression for-the Jjoint
frequency distribution in terms of the moments can be obtained from a
multivariste version of Edgeworth's series. This seriles is derived (see
ref. 7, for instance) on the assumption that the given process represents
the sum of a large number M of statistically independent random veri-
ables. Then, by expending the characteristic function for the process
in a series, several asymptotic expressions can be gbtained (depending
on the mammer in which the terms are collected) for the given non-
Gaussien distribution in terms of 1ts moments, the Gaussian distribution,
and its derivatives. As M tends toward infinity, all terms of the
series except the one which represents the Gaussian.part of the distri-
bution tend to zero. In Edgeworth's series, terms are grouped according
to powers of M, so that-each group can be expected to contain the terms
representing a given extent of deviation from the QGaussilan distribution.

This derivation can readily be extended to multivasriate distributions
by using the concepts of random-vector theory, such.as the multivariate
form of the characteristic_function and of the Gaussian distribution.

(See ref. 7, for instance.) The results can be expressed for the case
of Interest as — '

13k 33 13kl _ = 13 k1 3k
_ o a a*~da;
f(xO’xl’x.?) - ‘:l { 51 axiaxdaxk} *+ L axiaxjaxkaxz *
13k _Imn 6
10a Y%, o) - .. fG(xO’xl’XE) (&)
61 axiaxjaxkaxzaxmaiﬁ
15K .00

where « represents the moments of the given process and the _
indices 1, J, kX, « . « may have the value O, 1, or 2. In this expres-
sion the summation convention is used, so that any index repeated in a
product implies a surmation over that index. Terms associlated (in the
derivaetion) with a gilven power of M are grouped within braces. Only
the first two terms beyond the Gaussian part are listed here; from the
Edgeworth's series given in reference 7, one additional term can be
deduced by analogy. -
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The Statistical Moments of the Process

As used in equation (4), the moments are defined by

ot.i'jk"' = Di{x(t)}Dj{x(t)}Dk{x(t)} . e e (5)

vhere the bar designetes a time average, and the symbols Di5 DJ, e o
designate the i1th, jth, . . . derivative with respect to time. The
reason for this definition is that it permits the application of the
summation convention and thus greatly simplifies the writing of equa-
tion (4), and the reason for the superscript notation is that subscripts
will be used for the moments defined in the manner which is more descrip-
tive and convenient for the purpose at hand, because i1t assigns only one
set of indices to any moment, namely

p = X0 (8)X7 (£)%° (¢) (6a)

or

%mp = f _[ f xomxlnxepf(xo:xl:xz)% dxy dxp (6v)

The two sets of moments defined by equations (5) and (6) can be
identified with each other in the following manner: For an rth moment
the number of superscripts 1, j, k¥, . « . 18 r, and m+ n + p = r;
m, n, and p are, respectively, the numbers of O's, 1l's, and 2's among
i, j, k, . . . . Thus, for instance,

¥ %% = ap1z =x xR XXX = 01222
- 4222100 _ 120220
and so on. Obviously, the superscripts of a;jk"' can be pérmuted

in any manmer, but any change In the subscripts of Amnp changes the
moment referred to.

The first moments (mean values) of the process drpop = E, o110 = %,
and %01 = ¥ are zero; X is zero by stipulation and the others are

zero of necessity, inasmuch as the process is stationary. Of the nine sec-
ond moments, four are zero and two are equal to each other as a result of
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the assumed stationarity of the process; therefore, the following moments
are left:

@200 = 2 . .
%02 = ¥ — .
%01 = x % L

As pointed out in reference 7, for instance, they can all be expressed .
in terms of the (double) correlation function for .x(t), which is
defined by

Vo (1) = x(%)x(t+7) (7)

or in terms of the power spectrum, which is defined by

ox(@) =% [ etomy (mpar (®)

The required relations are glven in reference 7 and are repeated for the
sake of completeness in table 1.

The second moments can be arranged in a matrix In the following
mannex :

B 1 [ o]

%200 0 ~%o20 X 0 S
i3] = _ 32

3 22 w2

_Fb20 0 GOOQ L_i O__ |

(in which the fact was used that ayqy = =-Ggpgs; &8 may be noted from
table 1). The determinant of this matrix is
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A = agao(@200%002 - @0207) (9)

and the inverse of this matrix is

- ' T - 002 0 2020 B
Moo Moo Moz To00%002 = %020° %oo0%002 = “020°
[Myg] = [M0 M1 Mipf = 0 e 0
J 10 11 12 %020
%020 9200
Mo Mpp  Mzo > 0 5
N %o00%002 ~ %020 Lo00%002 ~ Y020

(10)

Both the determinant and the nonzero elements of M:L j occur in
equation (3).

Of the 27 third moments only 10 are distinct, and two of those are
zero as a result of stationsrity. The remaining 8 are listed in table 1,
and expressions ere given for them in terms of the triple correlation
function and double spectrum defined by

-

Vg ("'11 Tz) = x.(t)x ('b+-rl) x (-b+1'2) (11)

and

Py (a.)l ,a)g) = ﬂ%- f f e‘i(a’J_T]_+ﬂ32T2) Vyxe (Tl ,72) drq dto (12)

These expressions can be derived readily from the definitions of the
moments, of the correlation function, end of the spectrum by a straight-
forwerd extension of the procedure used for the second moments; these
derivations were obtained by using integrations by parts, differentia-
tione under the integral sign, and similar elementary operations, and
by teking advantage of the fact that the process is stationary. Some

of these moments have been calculated in reference 8 for the purpose

of estimating the frequency distribution of x(t) alone.
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Similarly, of the 64 fourth moments the 13 distinct and nonzero ones
are given in table 1, as are expressions for them in terms of the quad-
ruple correlation function and triple spectrum )

S (71,72,1'3> = x(t)x (t+'rl) x (t+72) bYs (t+'r3) (13)

and

- oo o “'i
q’m(‘*’l’wa’%) = 1—3-3-‘;/:-“/;“ \/;oo e (a)_]_-rl+<11272+a>573) L ('rl,’rg,"r3) dry drp drs '(114-)

Expressions for the Expected Number of Maxima

If the expression for the joint frequency distribution given by
equation (&) is substituted into equation (2), the following expression
is obtained for n(xo) :

_ 1 - Eﬂlf. 1)k«
n(xo) - (2,()3/2\/,&,} _{ 3[ I ( O_)} +

13kl 13 Xkl 13k Imn g 4
gtIEY _ gldot 15k (%) + 100t g TR 1 Jklmn
Ly 61

(x)p =+ .o o (15)

where : . . = . -

(o] T
i k. ) — y 5/2
e (*0) =f_m'x2|6x18XJ5xk R fG(xo’o,xa) (2) VA axp (26)

where r is the number of indices i, J, kX, « o« o o«

As iIn the case of the moments, another definition of these functions
is more convenient for some purposes, namely,
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0 MmN+
= il 5/2
Tmp (%) = f_ °°|x2\a T £6(¥0,0,%5) (20)7" "YA axp (17)

These functions can be identified with those defined by equetion (16) in
the memner indicated for the moments defined by equations (5) and (6),
respectively.

These functions are listed in table 2, in terms of the dimensionless
veriaeble

e=12 (18)
V=
and the paremeter
o = \,Z\/g (19)
;7;_25

The functions E(z) and E¥(z) in this teble are defined by

2
z _§&
E(z) Ef e 2 at

)

w _E2
EX(z) Ef e 2 ag
z

- - B - ()
- B erfc(-\/%-)

and
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where erf end erfc designate the error function and the complementary
error function, respectively. The functions not listed in table 2 are
zero or not required because they are multiplied by a moment which is
zero. Also included in teble 2 for the sake of completeness 1s the
function for Gaussian distributions IOOO'

In terms of these functions, equation (15) can be written as:

(2x)*/2 5 n(xg) = Tooo - {%r E‘soo%oo *+ So201T201 + 3%20T120% %02T102 * “0051005]} *
{)f‘,' [(%oo..'"?“zooe) Tuoo * *(T301 * F200%020) 01 *l._.:é__K_“aeov " %200%20) T20 ¥
6("202 - 290007 ’4““200“002) Toop * 12(“121 + ¢J‘ozoa)Ilzn + b (@105 + 3a0a0%02) T103 *
("oz;o - 3“0202>I01+o + 6(9pzp = %opofp0z) Tozz * (“oou - 5“0022>Ioou] *
%E’sooa%oo + BagouuannTsoy + Gaso020Tue0 + (5“50&"102 + Sp01%) Tyop +
1Bep0y09 20T521, * (2300005 * 180 02001 ) T305 * S9120" Tako * (8% p0%0p *+ B}

36":1112) Toop + (5°'201°’0Q3 + 9“1022)Ié04 + 120030% 31 T13 + (6%03"'120 +
36a012%11) T123 + 6oq.029003T105 + %030°T060 + Saozotoroloke *

Sety10%Topl + c"003231006]} ~e e (20)

A corresponding expression for the expected mexima per unit time
exceeding the level x5 can be obtained by integrating this expression

over X, inasmuch as

N(x0) =fm n(xo') dx,*

X0

(see eq. (1)). The resulting expression for N(xo) has a form identicsl

to equation (20) but with all functions Imnp("o) replaced by func-
tions Jmnp(x()) defined by

Tarp(xc) = [, Tamp(ro) 50" 21

These functions are also given in table 2, Finally, en expression for the
totel number of mexime per unit time can be obtained by replacing Inmp(xo)

i

{i.
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in equation (20) by Jmnp(-=). For the sake of convenience the values
of Jmnp(-=) are also listed in table 2.

Input-Output Relations

If x(t) 1s the output of a linear system subjected to an input
F(t), the double and higher order correlation functions end spectra
of x(t), which are required to obtain the moments when no other informa-
tion i1s availsble, can be related to the correspondingly defined function
for F(t). In this process either the indicial response h(t), that is,
the response to an impulsive input, or the transfer function H(w), that
is, the complex emplitude response to steady-state sinusoildsl oscilla-

tions of unit amplitude, must be known. These two characteristics of
the system are related by

H(w) =\/j e~10ty ()at (22)

The double correlation functions are related by the expression

¥ () = f ¥p(r-0)¥, (0)do (23)
where

¥y, (o) =fom h(t)h(t+]|o] )at (a4)

and the corresponding spectre are related more simply by

o (@) = |E(w)] Fop(w) (25)

where the vertical bars on H(w) designate the gbsolute value.

Similar relations can readily be derived for the higher order
correlation functions and spectra, the expressions for the spectra being

Pocxe (@15 02) = E () E () B¥ (w1 + o) Pp (0),0) (26)
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Pogsere (P17 @025 05) = B (@7 H (w) B (e05) BX (007 +aytavs) Qg (0 5 02, %5) (27)
and so on, where the asterisk designates the complex conjugate.

DISCUSSION

In the preceding presentation, attention has been confined to maxima,
However), the results can readily be modified to apply to minima as well,
because the expected number of minime per unit time in a band of unit
width centered on xy 1s glven by

n"(xo) =J;) x2f(xo,0,:{2)d.x2 ) ] (28)

A comparison of this equation with equation (l), which may be written
as . . - - EER .

n(xo) =/(; ng(xo,o,-x2)d.x2 | (29)

indicates that the expected number of minims cen be obtained for the
expected number of mexime by changing the sign of x, 1in the frequency-

distribution function.

Consequently, as a result of the definition of Imnp (xo) and
Jmmp (xo> , the expected number of minima can be obtained by meking the
following two changes in the results presented in this paper for maxima:

(1) Replace My, by (—MOE) wherever it occurs in table 2.

(2) Multiply those of the functions Imnp(xO) and Jnmp(xo) for
wvhich n is odd by (-1).

Similarly, if the number of mexime per unit time below x5 18
desired, this number can be obtained by subtracting N(xo) from N(-w);

and in view of the statements mede in the precedling paragraph, the same
procedure cen be used for the number of minime below x5 1f N(x0> is
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calculated for minims by changing the slign of sz end of the specified

functions. The total number N(-») of maxima is also the number of
minime, because for each meximum there must be a minimum.

As may be gethered from the procedure outline herein, when the
Joint frequency-distributlion function is not Gaussian, the computational
effort involved in obtalning the desired expected number of maxima or
minims soon becomes quite extensive, particularly in view of the fact
that usually multlple correletion functlons or spectra have to be cal-
culated first in order to obtain the required moments. Although equip-~
ment exlsts to measure such functions directly or through analog-computing
devices (see ref. 9, for instance), this equipment has not reached the
perfection of the equipment used for the measurement of ordinery correls-
tions and power spectra.

The numerical calculations of these functions from time histories
also pose difficulties beyond those resulting from the greater number
of variebles involved. The source of these difficulties may be described
by expressing the power spectrum corresponding to the nth correlation
function associated with a given process x(t) in terms of the Fourier
transform of the process

T
a(w;T) E‘/‘T e'iwtx(t)dt (30)

as

2(opT)e (@3T) - - - e(@giT)eX fopagh. by 3T)
2T

CPm...(”ﬁ.’ma""“h-l) =5 1lim

T w5

where the asterisk designates the complex conjugate. Hence, in the
ordinary spectrum (n = 2) only the absolute magnitude of a(w;T) occurs,
whereas in all higher spectra the phase enters as well. (See also
ref. 8.) Also, inasmuch as the 1im =a(w;T) does not exist, the exis-
T — o
tence of the spectra stems from the fact that the product of the func-
tions &a(w;T) i1s divided by T before the limit is taken. Consequently,
the higher the spectrum the more the effect of the single T i1in the
nominator is "diluted."” Consequently, in a practical case, for a given
reliability, a greater portion of a random process must be anelyzed if
higher-order correlation functions or spectra are to be obtained than
if only the ordinary functions are of interest. (See also ref. 10.)
However, if the deviatlion fram a Gaussilan distribution is not too large,
the higher order moments are likely to be small compared with the second
moments; therefore, a lower degree of reliability in their determination
msy be acceptable.
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In view of these difficulties the procedure outlined herein is
likely to find application primarily in problems where the expected
number of maxima of an output have to be estimated from knowledge con-
cerning the input, because then even the statistical characteristics of
the process are not known. For a glven process the procedure outlined
herein is likely to become of adventage only once the equipment for
measuring higher order correlation functions and spectra is perfected,
because i1f the process itself is known. (in the form of & time history)
the expected number of maxime cen be established by direct count more
readily then indirectly through a calculation of the joint frequency
distribution or moments; and if the frequency function is known, a
direct calculation of the extrema from equation (2) or (28) is 1ikely
to be more convenient then an indirect calculation based on moments
calculated from this function by using equation (6b).

CONCLUDING REMARKS

A method has been outlined for calculating the expected number of
maxime or minime of a random process with non-Gaussian frequency distri-
bution from the statistical moments of the process and its first two
derivatives. This method is based on an estimate of the Joint frequency
function of the process and its first two derivatives by means of a
generalized form of Edgeworth's series; the procedure consists essen-
tially in spplying a correction to the results for a Gaussian process.
The functions required in this procedure have been calculated for the
first two correction terms; therefore the effects of skewness and
kurtosis can be calculated, provided the third and fourth moments of
the process and its first two derivatives are known.

correletion functions and multispectra, and the relations between these
functions for the random output of = linear system ami those for the
random input have been indicated. o .

Langley Aeronsutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Fleld, Va., January 19, 1957. =

i
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TAELE 1.~ EXPRESSIONS FOR THE MOMENTS IN TERMS OF CORRELATION FUNCTIONS AND SPECTRA

Expressions in terms of (1), ¥x(T10To)s @ | Expresstons 11 terms of o (w), o (@35 00), emd
Moments Voo (Ty 920 Ty) Poce (219909 %s)
(2)
00
200 ¥x j; Px 40 .
a%y
%101 ;ga = %020 020
Becond
3. *
oS ¥ X . -
%20 32 J; fucfln
e °
o¥ *
<002 a'rl" . \_/; Py dm
300 Ve b o o amp
%y e
%01 Brr:; - 1r\/.-m f-on Madml S
2 .
%m0 Esfx - - % %91 . - % %201
a1z W - rf_nf_m Pt Zop dmy Ay
ah* ® rw
%102 31_—12:‘—22 k j: . f_ﬂ Py ey 8y
.
%30 P e T i
v
o A -2 -if‘fwwnmfmaadnadma
0l2 -b'rlaa'fzj 2 —s0Y o
/ as*xx 36"50: \ Lrere
3.3 4 2
%003 2\371531-23 * B'rlu3722/’ ) E*/--\—/-..n Pox\"L TRl )dml e

8The functions ¥,(r), “xx("]_""g)! end *m(fl,‘rz,T}) and their derivatives are to be evaluated at

TﬂTl-'l'zﬂ‘ri'lO. PR ——
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19

- Concluded

Expressions in terms of ¥x(t), ¥ax(T1,72)s 2| poressions in terms of Gx(w), Pxx(P1,02), 2nd
- *m(%ﬁaﬂj) Pocx (@1,0%2:3)
2 o o e
%301 a.,;am‘ —%j_@f,.f_, P 2 dwp dms
P
e 371;:--;%01 ‘%’“301
o a“’lga -%f_.f_,f_nq’m‘“l“‘ad‘”:.dﬂ)eﬂﬂs
al“v o ,m e
=2 3"‘12;:2 éf_,f__,f_w D@1 ey dany Ao
ij
“130 arlaq—z:-j - G211
LA 3 . ru e
Fourth | %qp1 a-.-lzaf;fj-é a::f: % aanp kf,mu/‘_.f_,q)mplz%dmlda’i%
Pt Lo e
2 ar;23r Py 8 f_.,.f_.f __ Paoa®Peg e 4oy dop S
Oy .
“103 3715;2%;52' - % f-. J: f_., P s iy g G
al’vm
oo P ety | A e
- e ) s
Foz2 By %o, 2375 # oo 2375/ %f f f I G
aT © r0 ~® 5 2 2
o P Seriorst %f‘f_ﬁf_‘, Py G2 0 Gay dap Savs
By By
—o Yo o T 3 2.3
o s(a"lka'raaa‘@a i EORLIRELS f f f m’- bagngPiy “‘25"’52)5‘”1 dap &

&me functions ¥,.(T), "xx('r]_l'ra)’ and ﬁm('rl,-rz,-rj) and their derivatives ere to be evaluated at

-r--rl-‘r2=1'3-0.
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TABLE 2.- THE FUNCTIONS Iyyy(Xo)s Jiyg(%0)r M Jygl-=)

1% .)"89"02 Ly g1 (%0) .%2 Ju;(xo) Iy el
000 @[u;-’fs(:)] Noe@ [‘:_!(l)ull*r_s! M (J——?l)} %
300 | - H;%—ZH(I 3% - 30Mp + o :’ + o {; 6«?: + a."t;} n(:):l %?[{(-1 +af) - u":z} ;aa{u - u"‘;}.j; s(:i‘ °

aou | | - 55[(1 +af)e + - uztz)-% !(c)] t{-l + o .{‘i 3(11 °

. ol i) ol 4] :
202 . HodtggM? a o

Mop
03 _“221/2 . % o
ko0 ?{:;H—@ + 6B - h“) + (e hq."’ + & - 6«.6)'53 - aagb}+ Yo 2 [{(1 + 302 - 3 :h + ¢2{ 6a2® + 0
a'*{:.u - mufe’ + oty of;' :(n] o “}“; b ] —

0L E‘;ﬁ;[{- Lr2d) o @+ 5;2_:;?:-2}.5{5: - a."’:’}-jg E(l)] 'e;%:- [1 + o) 4o (:. o g"’)aT n(g] 0

220 '—?:i%zl}{(; - o) + u";z} + o [3: o :3} ;2 s(e)] M%;%g[—«”: * (—1 o9 -‘:' z(:;J 0

202 "oo['l*‘ (:.+q.2)gﬂ %‘1{:! 0
i h“-?;g[l +PLe? :2 x(;] J% e‘;ml(l) °

1203 Mozl + (2 + az)g":] Hallz . o .
oko ?-:—iil + n'f- !(ia #1[ ) + m }_!_' il Lsni“%
oz2 Hyy - Hea TRy - %_
004 Mop(-1 % £9) __ﬁg;_[ 1+u.f.+a-r:1_=_{ 1"“‘)] 'Eﬁ;’f
Hoe?/ 2 oo’ _
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TAEGZ 2.- TEE FONCTIONS Iygi(xg), Jyg(co)s AND Jjpx(-w) - Conelnded
i B (%) S T13(%) (=)
50053;[{(5+15c2+55c"-15¢5)-(6+55a?+15a"+90a.‘-k5c3):"’+ &5_[{(5+15=2+30a-"-15¢6)i-(1+5¢2+1°°u+ °
T2
(2 + 602 + 152 + 2005 + 158 - 151 4% 4 #g‘} + ¢5{-:|.05: + 1005 - 1008)85 - =1°g5} * a."{l: - k3a? + 15t -
g ¥
1050285 - 21aM5 + u.6;7}e z(g{l ¢5;5}, 3(;)]
501&-[{(;1.10&24-15;") (6+25a.2+h0¢"+50c.6)g"’ ﬁ-—[(}-l-lhz-l-l&k)i-(1+k¢2+5¢~’+k¢6)g}+ °
(2 + %0® + 100* + 200 + 5° ;"}+¢6{15;+10=e _“5}’:3“)] "{ &%t +u:;}§'s(e)]
um-%:[{.(nsé-x‘)+(1+u¢2+6¢“-s¢‘)g2+¢3g'}+ -"“"‘;7:[{(1+5a 5«):+¢g5}+¢2{5-6¢2g2+ o
L2 Moz
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%02 u°°2[5 -6h s e (1 aﬂ"’gﬂ -Mooﬂzn[n -+ c?);’] °
2
sz - muzgi[{-(l + 302 + (14 32 + 5 ;% + a.“{sg - cﬁ’}c“; x(g£| ,/2[(1 + 208)p + 21 - ¢2E2).i- s(:ﬂ 0
303 kuoe[! R P c"’)zg“:l WE‘ -G c-z)?] °
Rty ¥o2? £ ] 3y, :
2o Lbfezr[{(l -+ s"‘;a} + uz{-s; + c-;"’P}.—E E(2) -QT!- [—a.zg +{1- cﬁz)j_ z(gﬂ 0
1/
= ootafi - v ] Sae .
20k 1(022[(3 + c."’) @ + '{¢2 + a.h) ;2 + + ua)zgﬂ 'HOQE{() + Gz)l - (1 + “2)53} [+
m mue"”[ £ x x(;] ?u 5:':(;) o
13 “u"an- -fa+d "j -uuuael/zg o
105 Moo - 3(2 + 2P +(1+=ﬁ¢ﬂ ’/2[”-;’] 0
g2 2 +a?
050 -%;"il}i-l o%‘x(;ﬂ %‘:—2—[&%3(:) + 1+u. }1_!_5 i\ E%HJK;—EE
2 1#af z 3\5“‘:.12
B ot Tt a
22
o2t ¥y a2 - 89 “oo [5 2,20 EY z-(ﬁ ;Eg)-_l &I_&:O:
g
005 w5 - 62 + oY) i:;;[{-(l s s e s (1s az)”ztj} + 2%.‘,:

3t ;’_l"f:‘:i B’(r-i-a. g)]
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